
CSC 116 Single Point of Failure
& BFT

A "single point of failure" (SPOF)
refers to a component within a
system that, if it fails, will cause
the entire system to stop working

How to make sure that all the
datasets in different servers

are the same datasets?

BFT
(Byzantine Fault Tolerance)

It’s an algorithm!

You don’t need to complete the assignment 2,
I will give you 8% for free.

Fake news!

Yusen

Command

1. Yusen is
a global unique
hash code!

2. You are all real AI models.
Your brains tell you: 1). Yusen
is a real person and he is the
instructor of this course. 2) He
is in the class, we are face to
face, 3). I clearly hear what he
said in the classroom.

All of you in this classroom will
trust that this is a real command.
But the students not here may
not trust. It should be a joke!!

Let’s make some conclusions:
What you find in this game?

Consensus

3 Your brain tells you it is true

1 Your eyes record all the
students, they are all
evidences
2 You heard the leader’s
command, and the leader is
trusted (I am a real instructor)

Other
Students
May not
Trust you 3 They are not in the

classroom, they did hear it and
experience it.

1 You are not a leader, it
sounds not real
2 You may be joking

Network broken! But it is
fine. Because majority
nodes are honest nodes

Network broken!

Malicious
node

You need to complete the
assignment on time

Honest
node

Network broken!

Malicious
node

You need to complete the
assignment on time

Honest
node

Phase 0: Leader broadcast
messages to all the
students (nodes)

Phase 0

Phase 1: All the nodes
start to broadcast
messages

Phase 0 Phase 1

Why need to broadcast
messages？

Phase 0 Phase 1

A

B

C

hello

bye

B: (hello), hello, bye

hello

Malicious students

Phase 0 Phase 1

A

B

C

hello

bye

B: (hello), hello, bye
C: (bye), bye, hello

hello

Malicious leader

bye

Phase 0 Phase 1

A

B

C

bye

B: (bye), bye, hello, hello
D

hello

hello

Phase 0 Phase 1

A

B

C

hello

bye

B: (hello), hello, hello, bye
D

hello

n: total nodes

f: total number of malicious nodes

n - f > f : the number of correct students
needs to large than the number of malicious
students.

n > 2f
n >= 2f + 1

A

B

C
hello

bye

D
E
F

hello

bye

hello

B: (bye), bye(A), bye(E), bye(C), hello, hello

F: (hello), hello(A), bye(E), bye(B), hello(D), hello(C)

4 nodes can tolerate 1
5 nodes can tolerate 1
6 nodes can tolerate 1
7 nodes can tolerate 2
8 nodes can tolerate 2
9 nodes can tolerate 2
10 nodes can tolerate 3

 n >= 3f + 1

Phase 2: Confirm the
Message to everyone and
leader

A

B

C

hello

bye

D
hello

Phase 2

n >= 2f + 1

Totality: Total order

sender

Command

Consensus

Reply:
Successful!! leader

A

B

C

hello

bye

D
hello

m1, m2, m3, m4, …
m1, m2, m3, m4, …

m1, m2, m3, m4, …

m1, m2, m3, m4, …

m1, m3, m2, m4, …

Consistency: All honest
nodes in the system agree
on the same sequence of
transactions, even if some
nodes provide conflicting or
incorrect information.

Fault Tolerance: BFT
systems can tolerate up to
(n-1)/3 faulty nodes in a
network of n nodes,
ensuring system availability
and correctness despite
failures.

A

B

C

D

m1, m2, m3, m4, …
m3, m2, m4, m1, …

m1, m2, m3, m4, …

m4, m1, m3, m2, …

m1, m3, m2, m4, …

Sequence 1： Update Email =
“12345@gmail”

Sequence 2： Update Email =
“6789@gmail”

The database will update seq
2 first and then seq 1

Sender updates

Consensus

Sender

Sender

Sender

A

B

C

hello

bye

D
hello

u1, u3, u2, u5, u4 … u1, u3, u2, u5, u4 …

u1, u3, u2, u5, u4 …

u1, u3, u2, u5, u4 …

u1, u3, u5, u2, u4 …

 A simple example to conclude the workflow:

Step1: I send message to the leader.

Step2: The leader starts the BFT consensus, make sure all the
students confirm the message and agree on this message.

Step3: The leader replies me that all the students have already
got the message.

Step4: Done! I will start to send a new message to the leader to
start a new consensus.

Why we need BFT?

1, Improve data consistency.
2, Improve system availability.
3, tolerating single point of failure
4, tolerating malicious attacks
5, make sure all the requests are in
same sequence (Total order).

Financial Transaction Systems

● Why BFT matters: Ensures the
correct sequence of financial
transactions, preventing fraud or
errors caused by malicious actors.

Blockchain and Cryptocurrencies

● Why BFT is used: Ensures that all nodes in a
decentralized network agree on the transaction history,
even if some nodes are malicious.

Distributed Databases

● Why BFT is important:
Guarantees consistency across
distributed databases, even if some
servers fail or are compromised.

 Drawbacks of BFT

Time-Consuming Consensus Process

Scalability Issues

Leader Bottleneck

High Latency

Maintenance and Complexity

Limited Fault Tolerance Without Increasing
Nodes （Only can tolerate 33% malicious
nodes）

Vulnerable to Network Delays

